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Abstract We introduced previously an on-line resource,
RANKPEP that uses position specific scoring matrices
(PSSMs) or profiles for the prediction of peptide-MHC
class I (MHCI) binding as a basis for CD8 T-cell epitope
identification. Here, using PSSMs that are structurally
consistent with the binding mode of MHC class II
(MHCII) ligands, we have extended RANKPEP to
prediction of peptide-MHCII binding and anticipation of
CD4 T-cell epitopes. Currently, 88 and 50 different MHCI
and MHCII molecules, respectively, can be targeted for
peptide binding predictions in RANKPEP. Because
appropriate processing of antigenic peptides must occur
prior to major histocompatibility complex (MHC) binding,
cleavage site prediction methods are important adjuncts
for T-cell epitope discovery. Given that the C-terminus of
most MHCI-restricted epitopes results from proteasomal
cleavage, we have modeled the cleavage site from known
MHCI-restricted epitopes using statistical language mod-
els. The RANKPEP server now determines whether the C-
terminus of any predicted MHCI ligand may result from
such proteasomal cleavage. Also implemented is a vari-
ability masking function. This feature focuses prediction
on conserved rather than highly variable protein segments
encoded by infectious genomes, thereby offering identifi-
cation of invariant T-cell epitopes to thwart mutation as an
immune evasion mechanism.
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Introduction

T-cells play a central role in the host adaptive immune
defense by the recognition of foreign peptide antigens
bound to cell-membrane expressed major histocompati-
bility complexes (MHC) via their T-cell receptors (TCR)
(reviewed in Garcia et al. 1999; Margulies 1997; Wang
and Reinherz 2001). Antigen presenting MHC molecules
are extremely polymorphic (Reche and Reinherz 2003),
and fall into two major classes, termed class I and class II
(reviewed in Maenaka and Jones 1999; Stern and Wiley
1994). Antigens presented by MHC class I (MHCI) and
MHC class II (MHCII) are recognized by two distinct sets
of T-cells, CD8 and CD4 T-cells, respectively (reviewed in
Wang and Reinherz 2001). Engaging both T-cell subsets is
desirable for mounting a strong defensive immune
response against cancer cells and pathogens.

T-cell immune responses are driven by antigenic
epitopes whose identification is important for under-
standing disease pathogenesis and etiology as well as for
vaccine design. Bona fide experimental identification of T-
cell epitopes is costly and time consuming, requiring the
synthesis of overlapping peptides spanning the entire
length of a protein and necessitating complicated in vitro
cellular assays for each peptide synthesized (Draenert et al.
2003). As a result, alternative computational approaches
have been developed for the prediction of antigenic
peptides. Since T-cells recognize antigenic peptides only
in the context of MHC molecules (Zinkernagel and
Doherty 1974), computer-aided methods for the anticipa-
tion of T-cell epitopes rely mostly on the prediction of
peptide-MHC binding (Hammer 1995). Peptides bound to
the same MHC are related by sequence similarity (Falk et
al. 1991; Rammensee et al. 1995) so that peptide binding
patterns (Sette et al. 1989) as well as motif matrices (De
Groot et al. 1997; Rammensee et al. 1999) have also been
used for the prediction of peptide-MHC binding. In this
regard, we have recently introduced a more sophisticated
matrix method involving the use of position-specific
scoring matrices (PSSMs) or profiles (Gribskov et al.
1987) for the prediction of peptide-MHCI binding (Reche
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et al. 2002). This resource is available online at our
RANKPEP web server (http://www.mifoundation.org/
Tools/rankpep.html). Profiles are derived from a set of
aligned peptides known to bind to a given MHC. Correct
alignment of peptides by structural or sequence similarity
is essential for the proper prediction of peptide-MHC
binding (Gribskov et al. 1987). Profiles of aligned peptides
known to bind to MHCII molecules could also be used for
the prediction of peptide-MHCII binding, and consequent
anticipation of CD4 T-cell epitopes. However, alignment
of MHCII ligands is quite challenging since peptides
binding to a single MHCII molecule are extremely
variable in length and share very limited sequence
similarity (Barber and Parham 1993; Madden 1995;
Stern and Wiley 1994). In response to this complexity,
in this paper we describe the use of the motif discovery
program MEME (Bailey and Elkan 1995) to generate
alignment and profiles that are consistent with the binding
mode of peptides to MHCII molecules. Fifty MHCII-
specific profiles have been created, allowing the extension
of the RANKPEP resource to the anticipation of CD4 T-
cell epitopes. On average, the sensitivity of these MHCII-
specific profiles is such that ~60% of known MHCII-
restricted T-cell epitopes are found among the top 2%
scoring peptides from their protein sources.

Anticipation of T-cell epitopes is heavily predicated on
the prediction of peptide-MHC binding, yet prior to MHC
binding, correct peptide processing must occur to liberate
a peptide from its protein source. Processing of MHCII-
restricted epitopes occurs in the endosomal compartment,
being mediated by several endopeptidases in combination
with amino-peptidases and carboxy-peptidases (Pieters
2000; Watts 2001). This complexity makes the identifica-
tion of any pattern related with processing of class II
restricted peptides difficult. In contrast, there is experi-
mental evidence that the C-terminus of MHCI-restricted
epitopes results from the selective proteolysis of cytosolic
proteins mediated by the proteasome (Craiu et al. 1997).
The proteasome thus plays a vital role in determining
cytotoxic T-cell (CTL) epitopes, and consequently we
have modeled the proteasomal cleavage site from MHCI-
restricted peptides using statistical language models.
Language models for proteasomal cleavage prediction
(LMPCP) could properly recognize up to ~90% of the C-
termini from a set of 554 known MHCI-restricted
epitopes, independent of the training set. Prediction of
those MHCI-peptide binders containing a C-terminus that
is likely to be the result of proteasomal cleavage is now
implemented by the RANKPEP web server, leading to
refined CTL epitope predictions. Finally, because amino-
acid sequence mutation offers a means for immune
evasion exploited by some pathogenic organisms such us
HIV, we implemented the RANKPEP web server with a
feature to mask the sequence variability from a multiple
sequence alignment (MSA) using the Shannon entropy
measure (Shannon 1948) as a variability metric (Reche
and Reinherz 2003; Stewart et al. 1997).

Materials and methods

Peptide and protein sequences

Sequences of peptides that bind to MHC molecules were
collected from the MHCPEP database (Brusic et al.
1998b). All peptides in the MHCPEP database are binders,
but their binding strength is reported as unknown, low,
moderate, or high. In this work we have excluded MHC
ligands that were labeled as low binders. Sequences of
naturally restricted T-cell epitopes were collected from the
SYFPEITHI database (Rammensee et al. 1999). Full-
length sequences of proteins containing T-cell epitopes
were isolated from the non-redundant database of Gen-
Bank (Benson et al. 2003) following a blast search
(Altschul et al. 1997) with the relevant T-cell epitopes as
the query.

Alignments and PSSMs of MHCI and MHCII-specific
ligands

Block alignments of peptides binding to specific MHCI
molecules were obtained as indicated elsewhere (Reche et
al. 2002). Briefly, peptides were collected from MHCPEP
according to their MHCI binding specificity, and subse-
quently grouped by their sequence length to create block
alignments. Likewise, peptides binding to MHCII mole-
cules were collected from the MHCPEP database, and
divided into subsets according to their MHCII binding
specificity. Peptides shorter than nine residues were not
considered. Subsequently, motif block alignments of
peptides binding to specific MHCII molecules were
obtained using the motif discovery program MEME
(Bailey and Elkan 1995), using the command meme file.
fasta -protein -mod oops -nmotifs 1-minsites 4-maxsites
300 -minw 9 -maxw 9 -evt 10,000, where file.fasta
corresponds to each of the MHCII-specific subsets of
protein ligands in FASTA format; -mod oops, indicates
that each sequence has a binding site; -minsites 4 -maxsites
500, indicates that the motif should contain between four
and 500 sequences; -min 9 -maxw 9, indicates that the size
of the motif is exactly nine; and finally -evt 10000 is the
expected threshold value for a sequence to be included in
the motif. Collections of peptides binding to the same
MHCII molecule usually contain overlapping peptides,
and therefore block motifs yielded by MEME frequently
contain repeated sequences corresponding to the over-
lapping regions of different peptides. Consequently,
alignments were parsed to eliminate sequence redundancy,
yielding block alignments of unique sequences.

Profiles were obtained from peptide alignments contain-
ing a minimum of five sequences using PROFILE-
WEIGHT (Thompson et al. 1994b) and the BLK2PSSM
utility included in the BLIMPS package (Henikoff and
Henikoff 1996; Henikoff et al. 1999). PROFILEWEIGHT
uses a branch-proportional weighting method, whereas a
position-based weighting method (Henikoff and Henikoff
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1994) was applied to the PSSMs obtained with
BLK2PSSM.

Scoring peptide-MHC binding using PSSMs and
cross-validation tests

Peptide scores indicate the similarity (and hence binding
potential) of the peptides to the set of aligned peptides
known to bind to a given MHC molecule. Scores are
obtained by aligning the PSSM with the protein segments,
and adding up the appropriate profile coefficients match-
ing the residue type and position in the protein segment.
Scoring starts at the beginning of each sequence, and the
PSSM is moved over the entire sequence one residue at a
time.

Cross-validation tests to address the predictive perfor-
mance of profile matrices were carried out using a ROC
analysis (Swets 1988). The ROC curves were generated
plotting the function SE versus 1-SP for various thresholds
of top scoring peptides (0.5, 1, 2, 3, 5, 10, 20%), where
SE, and SP represent the sensitivity and specificity of the
predictions, respectively. The area under the ROC curve
(AUC) provides a measure of overall prediction accuracy.
SE and SP are calculated from Eqs. 1, 2

SE ¼ TP= TPþ FNð Þ (1)

SP ¼ TN= TNþ FPð Þ (2)

where TP are true positives (binders predicted as binders);
FN are false negative (binders predicted as non-binders);
TN are true negatives (non-binders predicted as non-
binders) and FP are false positives (non-binders predicted
as binders). For each of the MHC molecules in Table 1,
known binders were divided into two distinct sets, a
binding training set and a binding test set, with
comparable numbers of peptides. PSSMs were derived
from the training set using both PROFILEWEIGHT and
BLK2PSSM as indicated elsewhere and then used to test
whether the peptides in the binding test set were TP or FP
at the mention thresholds. At any given threshold a test
binding peptide was considered to be a TP if it was found
among the predicted peptides at that threshold from a
random protein of 1,000 (amino-acid composition after
frequencies in the swissprot database) incorporating the
tested peptide. The peptide was a FN if it was not among
the predicted peptides. Calculation of SP requires having a
set of experimentally determined non-binders. Unfortu-
nately, because there are very few experimentally verified
examples of peptides that do not bind to a particular MHC,
we have followed an approach similar to that of Donnes
and Elofsson (2002) to obtain a set of non-binder peptides.
In any given protein, most of the peptides do not bind to
the MHC molecule (90–98%), and consequently a
randomly generated peptide could be considered as a
non-binder. Thus, we have calculated the SP of the
predictions from a set of randomly generated peptides (not
identical to the binders). The number of non-binder

Table 1 MHC molecules tar-
geted for peptide binding pre-
dictions

aNumber of ligands known to
bind to the relevant MHC mo-
lecules included in the align-
ment.
bPeptides in the alignment
identified as T-cell epitopes for
which we retrieved protein
sources. These peptides were
targeted in the epitope predic-
tion test using PSSMs derived
from the relevant alignments.

MHCI Alna Procb MHCII Alna Procb

HLA-A2 (A*0201) 291 139 HLA-DQ2 (DQA1*0501×DQB1*0201) 31 15
HLA-A2 (A*0202) 20 15 HLA-DQ8 (DQA1*0301×DQB1*0302) 52 25
HLA-A2 (A*0204) 34 18 HLA-DP9 (DPA1*0201×DPB1*0901) 18 15
HLA-A2 (A*0205) 22 15 HLA-DR1 (DRB1*0101) 189 81
HLA-A2 (A*0206) 34 14 HLA-DR1 (DRB1*0102) 21 11
HLA-A3 (A*0301) 47 36 HLA-DR4 (DRB1*0401) 322 140
HLA-A11 (A*1101) 63 44 HLA-DR4 (DRB1*0402) 72 36
HLA-A24 (A*2402) 57 54 HLA-DR4 (DRB1*0405) 66 23
HLA-A33 (A*3301) 23 22 HLA-DR4 (DRB1*0404) 44 30
HLA-A68 (A*6801) 50 40 HLA-DR7 (DRB1*0701) 81 49
HLA-B7 (B*0702) 48 41 HLA-DR8 (DRB1*0801) 41 31
HLA-B27 (B*2703) 22 16 HLA-DR9 (DRB1*0901) 39 10
HLA-B27 (B*2704) 10 10 HLA-DR11 (DRB1*1101) 124 25
HLA-B27 (B*2705) 82 35 HLA-DR11 (DRB1*1104) 28 10
HLA-B35 (B*3501) 81 59 HLA-DR15 (DRB1*1501) 35 19
HLA-B51 (B*5101) 39 26 HLA-DR17 (DRB1*0301) 20 15
HLA-B51 (B*5102) 32 29 HLA-DR51 (DRB5*0101) 52 29
HLA-B51 (B*5103) 30 28 I-Ak 121 66
HLA-B53 (B*5301) 39 31 I-Ad 240 62
HLA-B54 (B*5401) 42 33 I-Ed 212 49
H-2Kb 84 18 I-Ek 226 58
H-2Qa-2a 22 21 I-Ag7 76 44
H-2Db 71 22 I-As 67 32
H-2Ld 64 14 I-Ab 97 53
H-2Kd 63 32
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peptides was double that of the peptides in the binding set.
At each threshold a non-binder was considered a TN if it
was not among the predicted peptides from a random
protein of 1,000 amino acids incorporating the tested non-
binder peptide. The non-binder peptide was considered an
FP, if it was found among the predicted peptides.

Epitope prediction tests using PSSMs

Peptide-MHC binding prediction tests were carried out by
determining the relative ranking of known MHC-restricted
epitopes from their protein sources using the relevant
profiles. Several thresholds of top scoring peptides were
checked (0.5, 1, 2, 3, 5, 10, 20%). Peptides were
considered to be predicted if they were among the top
scoring peptides at the set threshold. MHC molecules
targeted for peptide predictions are shown (Table 1). These
MHC molecules were selected on the basis of alignments
of known ligands that include at least ten sequences of
MHCI-restricted or MHCII-restricted peptides, CD8 and
CD4 T-cell epitopes, respectively. Moreover, the binding
specificity of the ligands was known at the allelic level.
MHCI-restricted peptides considered in these tests were all
nonamers (9mers), and annotations about known CD8 and
CD4 T-cell epitopes were taken from the SYFPEITHI
database (Rammensee et al. 1999). Binding predictions of
these epitopes to their MHC molecules were tested using
PSSM that were derived from alignments with and without
the epitope to be predicted. PSSMs for prediction tests
were obtained using both PROFILEWEIGHT and
BLK2PSSM as indicated elsewhere.

Prediction of proteasomal cleavage using statistical
language models

The proteasomal cleavage site was modeled from a
database consisting of 332 naturally MHCI-restricted
epitope fragments and their C-terminal flanking regions
using the SRI language modeling toolkit (SRILM)
(Stolcke 2002). Selected epitopes were all restricted by
human MHCI molecules (HLA I). To prevent biases
towards any given HLA I allele, selected peptides included
all peptides restricted by HLA-C (38) and HLA-G alleles
(12), and a similar number of epitopes restricted by HLA-
A and HLA-B binding peptides, 135 and 147, respectively.
Moreover, no more than 5% of the selected epitopes were
restricted by the same HLA-A or HLA-B allele. LMPCP
were created using the SRILM NGRAM-COUNT utility
over training sets derived from the above database. From
this database different training sets of fragment size 10, 8,
6, and 4 were generated (length was fixed in all fragments
of the same training set). Cutpoints in fragments were
indicated by a vertical line (“|”) after the C-terminal end of
the epitope (P1 cleavage site), with fragments having an
even number of residues on either side of the cleavage site.
Representative fragments of training sets of ten and four
residues will be EPRKL|VTQDL and KL|VT, respectively.

For each training set of a given fragment size (N), N−2
different LMPCPs were generated by changing the
window size or order (i) of the model from i=2 to i=N
−1. LMPCPs then varied with the length of the fragments
in the training file and with the order i chosen to generate
them, and for clarity will note them as LMPCPN

i. Each
LMPCPN

i was tested using the SRLIM HIDDEN-
NGRAM utility over test files containing peptide frag-
ments of the same size (N) as the training file and using the
same window size (i) as that of the LMPCP. HIDDEN-
NGRAM is a word boundary tagger based on n-gram
models (Stolcke 2002) which at a selected probability
threshold indicates the cutpoints in the fragments of a
testing file by inserting the cleavage marker “|” into a
position determined by the LMPCP. Thirteen probability
thresholds were tested for each LMPCP (0.10, 0.15, 0.20,
0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70).
Test files were derived from 554 human MHCI-restricted
epitopes different from those in the training test but of the
same size and nature (even number of residues around the
cutpoint) as those used in the training sets and without the
cleavage site indicated. Evaluation of the results was
carried out by determining the percentage of correctly
predicted cleavage sites (PCS) in the test files. In addition,
a percentage of expected cleavage sites (ECS) was
calculated for each model according to the equation

ECS ¼ 100� C= N � 1ð Þ (3)

where C is the number of cutpoints per fragment yielded
by a given model LMPCPN

i when tested in a file of
fragments size N. Conceptually, ECS would indicate the
number of correctly PCS, if cleavage resulting from a
given model was random. Thus, the above 23 different
LMPCPN

i [N=10, 6, 4; i=1–(N−2)] were tested for each
probability threshold, and ranked by the difference
between the PCS and ECS. In addition, each LMPCP
was tested on files containing the full-length protein
source of the 554 human MHCI-restricted peptide frag-
ments used in the testing files, and the mean length of the
fragments also was obtained.

Consensus sequence and sequence variability masking

Sequence variability is calculated from multiple amino
acid sequence alignments as indicated by Reche and
Reinherz (Reche and Reinherz 2003), using a variability
metric (V) formally identical to the Shannon entropy
equation (Shannon 1948). Briefly, V per site is given by

V ¼ �
XM

i¼1

Pi log2 Pi (4)

where Pi is the fraction of residues of amino acid type i,
and M=20, the number of amino acid types. V ranges from
0 (total conservation, only one amino-acid type is present
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at that position) to 4.322 (all 20 amino acids are equally
represented in that position). Note that in order to achieve
the maximum value V=4.3, at least 20 sequences are
required. Gap symbols (–) are considered for deriving the
consensus sequence but are not computed for the
variability calculations. Given a sequence variability
threshold Vt, a consensus sequence is generated from the
sequence alignment as the most common amino acid for
those positions with a V≤Vt, whereas variable positions
(V>Vt) are masked and represented in the consensus
sequence with a dot. Segments with a position masked are
not considered in the RANKPEP predictions of peptide-
MHC binding.

Sequence logos

Peptide fragments of MHCI-restricted epitopes with their
flanking regions were aligned centered around the C-
terminal end (cleavage site) of the MHCI-restricted
peptide, and sequence information was calculated for
each position and displayed using a sequence logo
(Schneider and Stephens 1990). In a sequence logo each
of the residues present in a position of the sequence
alignment is represented with a height that is proportional
to its frequency, and the height of the entire stack is
proportional to the total information content (R) in that
position. Sequence information R per site was given by the
following equation

R ¼ 4:3� V bits per positionð Þ (5)

where 4.3 is the upper variability limit for 20 symbols, and
V is the variability in that position (Eq. 4). Sequence
information is given in bits.

Results

Structure-based alignments of MHCI and MHCII
ligands

MHC molecules, also known as human leucocyte antigens
(HLAs) in humans, are highly polymorphic molecules
imposing distinct chemical and physical constraints on
their selective peptide binders which are related to each
other by sequence similarity. PSSMs or profiles (Gribskov
et al. 1987) created from a set of aligned peptide-MHC
binders provide a means for the prediction of peptide
binding to a given MHC molecule (Reche et al. 2002).
However, for a PSSM to be a good predictor of peptide
binding to MHC, peptides must be first aligned by
structural and/or sequence similarity. MHCI and MHCII
molecules bind peptides in similar yet distinct modes
(Barber and Parham 1993; Madden 1995; Stern and Wiley
1994), and consequently PSSMs were derived differently
for MHCI and MHCII ligands. MHCI ligands are of short
length (8–11), as they are constrained into the MHCI
peptide binding groove, with their N-terminal and C-
terminal ends connected by a network of hydrogen bonds
to conserved residues of the MHCI molecule (Madden
1995; Matsumura et al. 1992; Zhang et al. 1998) (Fig. 1a).
While peptides bound to the same MHCI can differ by one
or two amino acids in length from each other, proper

Fig. 1a, b Binding of peptide ligands to MHCI and MHCII
molecules. The figure shows the top of the molecular surface of the
antigen-presenting platform of representative human MHCI (a) and
MHCII (b) molecules as viewed by the TCR. The MHCI molecule
corresponds to HLA-A*0201 in complex with a peptide LLFGYP-
VYV from HTLV-1 TAX protein [PDB:1HHK (Madden et al.
1993)]. The MHCII molecule corresponds to HLA-DR1 in complex
with peptide PKYVKQNTLKLAT from influenza hemagluttinin
protein [PDB:1FYT (Hennecke et al. 2000)] The peptide binding
platform of the MHCI molecule is composed of two anti-parallel α-
helices sitting over a base of eight anti-parallel β-strands shown as
worm representation under the molecular surface. Likewise, the
peptide-binding platform of the MHCII molecule presents the same
secondary features, but resulting from the association of two
different polypeptide chains (an α1 chain in blue and a β1 chain in

yellow). Peptides bound to these molecules are represented by sticks
to highlight the contours of the binding groove. Note how the
peptide binding groove of the MHCI molecule is closed, and
peptides bind in a manner such that both the N-terminal and C-
terminal ends of the peptide (indicated by arrows) are nested into the
MHCI binding groove, restricting their lengths to 8–11 residues. In
contrast, the peptide binding groove of the MHCII molecule is open,
thereby imposing no limitation to the size of ligands, whose N-
terminal and C-terminal ends can extend beyond the binding grove.
The side chains of N-terminal and C-terminal end of the 9mer
peptide core that fit into the MHCII binding groove are indicated.
The molecular surface is colored by electrostatic potential (blue
positively charged and red negatively charged). The figure was
prepared using GRASP (Nicholls et al. 1991)
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structural alignment of diverse peptides is best guaranteed
if the peptides are of the same length (Reche et al. 2002).
Accordingly, we have separated the peptides bound to a
given MHCI molecule into subsets containing only

peptides of the same length, and created separate profiles
from ungapped block alignments. In contrast, the peptide
binding groove of MHCII molecules is open, allowing
both the N- and C-terminus of a peptide to extend beyond

Table 2 Performance of pro-
files for the prediction of pep-
tide-MHC binding. Peptide bin-
ders (Aln column of Table 1)
were randomly divided into a
training and binding set and a
ROC analysis was carried out to
determine the AUC value (per-
formance). Several ROC ana-
lyses were carried out with
different training and binding
sets, and the mean AUC value
(AUCm) with its standard devi-
ation is shown here. Also shown
is the best AUC value obtained
(AUCb). Sensitivities and spe-
cificities of the predictions with
the AUCb at a 3% threshold are
also given

MHCI Matrix SE/SP 3% AUCm AUCb MHCII SP/SE 3% AUCm AUCb

A*0201 PROFWG 0.90/0.86 0.79±0.06 0.86 HLA-DQ2 0.83/0.93 0.87±0.05 0.94
BL2PSSM 0.95/0.84 0.85±0.03 0.89 0.85/0.94 0.88±0.06 0.95

A*0202 PROFWG 0.90/0.90 0.80±0.07 0.90 HLA-DQ8 0.73/0.93 0.70±0.06 0.78
BL2PSSM 0.80/0.95 0.70±0.10 0.87 0.77/0.95 0.72±0.06 0.79

A*0204 PROFWG 0.82/0.94 0.68±0.09 0.79 HLA-DP9 0.84/0.93 0.80±0.06 0.91
BL2PSSM 0.53/0.97 0.61±0.06 0.70 0.83/0.94 0.88±0.10 0.95

A*0205 PROFWG 0.73/0.95 0.67±0.07 0.79 DRB1*0101 0.72/0.89 0.74±0.05 0.80
BL2PSSM 0.73/1.00 0.64±0.07 0.72 0.71/0.88 0.75±0.04 0.79

A*0206 PROFWG 0.94/1.00 0.85±0.05 0.94 DRB1*0102 0.68/0.94 0.72±0.05 0.80
BL2PSSM 0.88/0.97 0.79±0.06 0.88 0.65/0.97 0.72±0.04 0.79

A*0301 PROFWG 0.83/0.96 0.77±0.03 0.84 DRB1*0401 0.66/0.83 0.68±0.01 0.69
BL2PSSM 0.74/0.96 0.72±0.05 0.78 0.60/0.84 0.62±0.04 0.70

A*1101 PROFWG 0.97/0.90 0.88±0.03 0.94 DRB1*0402 0.73/0.93 0.70±0.07 0.80
PROFWG 0.87/0.91 0.81±0.06 0.87 0.72/0.93 0.72±0.04 0.79

A*2402 PROFWG 0.93/0.95 0.72±0.05 0.81 DRB1*0404 0.73/0.91 0.70±0.06 0.79
BL2PSSM 0.86/0.94 0.57±0.07 0.65 0.68/0.95 0.61±0.05 0.67

A*3301 PROFWG 0.82/0.91 0.61±0.10 0.80 DRB1*0405 0.75/0.98 0.76±0.05 0.82
BL2PSSM 0.45/0.91 0.50±0.06 0.75 0.77/0.98 0.82±0.04 0.85

A*6801 PROFWG 0.88/0.95 0.76±0.05 0.86 DRB1*0701 0.70/0.92 0.71±0.02 0.74
BL2PSSM 0.92/0.94 0.72±0.07 0.82 0.65/0.95 0.72±0.04 0.75

B*0702 PROFWG 0.92/0.98 0.87±0.05 0.94 DRB1*0801 0.55/0.96 0.52±0.07 0.64
BL2PSSM 0.92/0.98 0.73±0.05 0.82 0.45/0.97 0.52±0.06 0.63

B*2703 PROFWG 0.91/0.95 0.80±0.04 0.86 DRB1*0901 0.80/0.92 0.80±0.06 0.90
BL2PSSM 1.00/0.95 0.77±0.08 0.91 0.79/0.95 0.78±0.06 0.87

B*2704 PROFWG 0.80/0.90 0.61±0.13 0.81 DRB1*1101 0.49/0.92 0.57±0.04 0.65
BL2PSSM 0.60/1.00 0.61±0.09 0.80 0.47/0.91 0.54±0.04 0.61

B*2705 PROFWG 0.88/0.91 0.84±0.03 0.88 DRB1*1104 0.93/0.98 0.91±0.04 0.96
PROFWG 0.93/0.93 0.82±0.05 0.92 0.92/0.97 0.92±0.02 0.95

B*3501 PROFWG 0.90/0.92 0.82±0.04 0.89 DRB1*1501 0.62/0.94 0.61±0.08 0.72
BL2PSSM 0.93/0.91 0.71±0.06 0.80 0.59/0.96 0.60±0.07 0.70

B*5101 PROFWG 0.95/0.95 0.72±0.08 0.83 DRB1*0301 0.55/0.95 0.54±0.09 0.67
BL2PSSM 1.00/0.93 0.67±0.06 0.77 0.65/0.93 0.52±0.09 0.65

B*5102 PROFWG 0.88/0.98 0.68±0.05 0.76 DRB5*0101 0.79/0.96 0.83±0.03 0.86
BL2PSSM 0.75/0.97 0.60±0.10 0.77 0.77/0.92 0.81±0.03 0.85

B*5103 PROFWG 0.87/0.97 0.66±0.07 0.77 I-Ak 0.65/0.90 0.64±0.04 0.71
BL2PSSM 0.73/0.96 0.57±0.07 0.75 0.68/0.91 0.66±0.05 0.73

B*5301 PROFWG 1.00/0.97 0.94±0.04 0.97 I-Ad 0.63/0.89 0.71±0.02 0.74
BL2PSSM 0.98/0.96 0.91±0.04 0.95 0.65/0.88 0.73±0.02 0.76

B*5401 PROFWG 0.90/0.98 0.87±0.03 0.91 I-Ed 0.81/0.87 0.89±0.02 0.91
BL2PSSM 1.00/0.98 0.79±0.06 0.89 0.83/0.90 0.89±0.02 0.92

H-2 Kb PROFWG 0.90/0.96 0.91±0.03 0.95 I-Ek 0.82/0.94 0.84±0.03 0.88
BL2PSSM 0.90/0.96 0.90±0.03 0.93 0.80/0.97 0.84±0.03 0.88

H-2Qa-2a PROFWG 1.00/0.99 0.96±0.02 0.99 I-Ag7 0.66/0.96 0.69±0.06 0.76
BL2PSSM 1.00/0.99 0.96±0.02 0.99 0.65/0.99 0.63±0.06 0.72

H-2Db PROFWG 1.00/0.93 0.85±0.08 0.99 I-As 0.77/0.95 0.73±0.04 0.78
BL2PSSM 0.77/0.95 0.79±0.05 0.85 0.76/0.98 0.72±0.08 0.81

H-2Ld PROFWG 0.97/0.95 0.92±0.03 0.97 I-Ab 0.68/0.95 0.66±0.05 0.74
BL2PSSM 1.00/0.94 0.92±0.04 0.97 0.67/0.96 0.67±0.05 0.75

H-2Kd PROFWG 0.91/0.94 0.77±0.05 0.84
BL2PSSM 0.87/0.95 0.80±0.05 0.89
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the binding groove (Fig. 1b). Thus, peptides bound to
MHCII molecules display a great variability in length (9–
22 residues) even though only a peptide core of nine
residues fits into the MHCII binding groove per se. The
binding mode of this peptide core is conserved among the
different peptide-MHCII complexes, providing the energy
that anchors the peptide to the MHCII molecule (Wang
and Reinherz 2001). An important contribution to the
binding energy derives from a set of conserved hydrogen
bonds between the backbone of the peptide core and
conserved residues in the MHCII molecules (Barber and
Parham 1993; Madden 1995; Stern and Wiley 1994). As a
result, the peptide binding repertoire of MHCII molecules
is broader than that of MHCI molecules, and consequently
peptide-MHCII ligands share less sequence similarity than
peptide-MHCI ligands. Poor amino acid sequence simi-
larity between MHCII ligands together with their great
variability in sequence length makes their alignment
difficult and hampers the use of global alignment
algorithms such as CLUSTALW (Thompson et al.
1994a). Since alignment of the MHCII ligands requires
the identification of their binding core, we have turned to
the motif discovery program MEME (Bailey and Elkan
1995). MEME uses an expectation maximization algo-
rithm in combination with a priori information regarding
the nature of the motif. The a priori information we used
was consistent with described structural information about
the binding of peptide to MHCII molecules, namely
identification of a single preferred register of peptide
binding to a given MHCII molecules whose length is nine
residues (see “Materials and methods” for detail).

Performance of peptide-MHC binding predictions
using profiles

A single measure of the accuracy of predictive models is
provided by the AUC value, which results from plotting
SE versus 1-SP at several thresholds (See Materials and
methods). We have carried out such analysis for each of
the MHC molecules shown in the Table 1, and the results

are provided in Table 2. For cross-validation, ROC
analysis was carried out using binding test sets containing
different peptides than those used for profile generation
(training sets). Calculated AUC values varied with the
actual peptides in the training and binding sets, and
consequently ROC analyses were carried out using ten
different training and binding sets (generated by randomly
dividing the peptide binders into two different sets), and
the mean AUC value (AUCm) and standard deviation is
shown the Table 2. Also in Table 2 is given the best AUC
value (AUCb) obtained from the above ROC analysis,
along with the SE and SP values at a 3% threshold. When
using PSSMs we are computing the similarity of the
peptide to a set of aligned peptides known to bind to the
MHC molecule, and thus variation of the peptide-MHC
binding predictions (given by the AUC standard deviation)
is linked to the overall amino acid sequence similarity
between the peptides in the training and test sets. Thus,
AUCb must result from the division of the peptide binders
into a training and a test set with the best overall sequence
similarity. Note that when all peptide binders are included
in the profiles, AUCb is likely to reflect the performance of
the relevant profiles for the prediction of peptide-MHC
binding.

Values of AUC=0.5 indicate random choice, while the
accuracy of predictions is poor for values of AUC<0.7,
good for values of AUC>0.8% and excellent for values of
AUC>0.9 (Swets 1988). Following the above and
considering the AUCb values, good peptide-MHCI bind-
ing predictions can be provided (PROFILEWEIGHT or
BLKWPSSM profiles) to 21 of 25 tested MHCI molecules
(Table 2, AUCb>0.8%) and excellent peptide-MHCI
binding predictions to 12 MHCI molecules (Table 2,
AUCb>90%). Peptide binding predictions to class II MHC
molecules were not as good. Nevertheless, adequate
peptide-MCHII binding predictions could be provided to
11 of 24 MHCII molecules, and excellent peptide binding
predictions to five MHCII molecules (HLA-DQ2, HLA-
DP9, DRB1*0901, DRB1*1104, I-Ed). Peptide binding
predictions provided to DRB1*0801, DRB1*1101,

Fig. 2a, b Peptide-MHC binding predictions using PSSMs derived
from alignments of different number of peptides. Performance of the
peptide binding predictions to A*0201 (a) and DRB*0101 (b)
computed as AUC values obtained from a ROC analysis where
predictive profiles were derived from sets of 5, 10, 20, 40, 80 and
120 peptide binders and tested on the remaining peptide binders

(Table 1). AUC values varied with the peptides included in the
alignment (training set). The AUC values plotted in the figure
correspond with the best value obtained after repeating the ROC
analysis with 100 different training sets. Profiles were obtained
using PROFILEWEIGTH (black bars) and BLK2PSSM (white
bars)
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DRB*0301 were poor (AUCb<0.7) but yet well above that
of a random choice (AUC=0.5).

The effect of the size of the training set in the
performance of the peptide binding predictions to
A*0201 and DRB1*0101 is shown in Fig. 2. The results
indicate that good peptide binding prediction (AUC>0.8)
can be provided to A*0201 from matrices derived with as
few as 20 peptides (Fig. 2a). On the other hand, a larger
number of peptides (>40) are required to provide good
peptide-binding predictions to the class II MHC molecule
DRB1*0101 (Fig. 2b). It is known that MHCI ligands are
more related by sequence similarity than MHCII ligands.
Apparently, a large collection of MHCII ligands is needed
to get a good representation of the class II peptide-binding
motif. However, using this ROC analysis, a comparison of
the performance of the peptide binding predictions across
different MHC molecules with respect to the training set
size should be approached with caution. For MHC
molecules with only a few known peptide binders that
are very similar to each other, the performance of the
profiles would appear very good. On the other hand, if a
large number of peptides are known to bind to the MHC
molecule and their sequence diversity is high, the
predictions might then not appear as adequate. Never-
theless, a profile derived from a large and diverse set of
peptides is more likely to predict new binding peptides

from a query protein than a profile derived from a few
related peptides. Therefore, a more rigorous ROC analysis
would need to be performed upon experimental determi-
nation of the binding of peptides predicted from a protein.
A final cautionary note applies to the SP values. Due to the
difficulty of finding experimentally determined non-
binders, SP values were calculated from random peptides
(see Materials and methods), and thus are quite high.

Prediction of MHCI-restricted and MHCII-restricted
T-cell epitopes using profiles

Profiles of MHC ligands can be used in combination with
the dynamic search algorithm to score and sort all peptides
according to their binding potential to the relevant MHC
molecule (see Materials and methods). Only peptides that
bind to MHC with an affinity above a necessary threshold
are able to elicit a T-cell response. Consequently, if PSSMs
are good predictors of peptide-MHC binding, T-cell
epitopes should be expected among the high scoring
peptides within their protein sources. We checked the
validity of this notion for the set MHC molecules shown in
Table 1. All prediction tests were carried out using PSSMs
that were generated using PROFILEWEIGHT (Thompson
et al. 1994b), which uses branch-proportional sequence

Fig. 3a, b Prediction of MHCI-restricted and MHCII-restricted
epitopes using PSSMs. Prediction of peptide-MHC binding using
PSSMs was evaluated for MHCI (a1,2) and MHCII (b1,2)
molecules by scoring known MHC-restricted epitopes from their
protein sources. MHC molecules targeted for peptide-MHC binding
prediction are those shown in Table 1. Predictions were carried out
at different thresholds (abscissa) [(percentage of top scoring
peptides)]. A peptide is computed as predicted if it is found
among the top scoring peptides (set by the threshold) from its
protein source using the relevant PSSM, and the percentage of

correctly predicted peptides is plotted in the figure (ordinate).
Predictions were carried out using PSSMs derived from alignments
that did (a2, b2) or did not (a1, b1) contain the peptide tested, and
PSSMs were generated from these alignments using PROFILE-
WEIGHTwhich uses a branch-proportional weighting method (gray
bars) and BLK2PSSM under position-based weighting method
(black bars). Given that several MHC molecules were targeted for
peptide binding predictions (Table 1), plotted values correspond to
the mean and standard deviation of percentage of properly predicted
epitopes for all MHC molecules examined
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weights, and BLK2PSSM in combination with position-
based based weights (Henikoff and Henikoff 1994;
Henikoff et al. 1999). The percentage of correctly
predicted MHC-restricted epitopes at several thresholds
of top scoring peptides (0.5, 1, 3, 5, 10, 20%) using the
relevant PSSMs are shown in Fig. 3. Figure 3a illustrates
predictions of MHCI-restricted epitopes (CD8 T-cell
epitopes) using PSSMs generated from alignments without
(Fig. 3a1) or with (Fig. 3a2) the epitope evaluated as a
binder of a given MHC molecule. Likewise, Fig. 3b
corresponds to predictions of MHCII-restricted epitopes
(CD4 T-cell epitopes) using PSSMs generated from
alignments without (Fig. 3b1) or with (Fig. 3b2) the
targeted epitope. Results indicate that on average over
80% of CD8 T-cell epitopes were predicted at a 2%
threshold (predictions with all peptides included in the
alignment), whereas up to a 3–10% threshold was required
to predict 80% of CD4 T-cell epitopes (predictions with all
peptides included in alignment). Also, as reported else-
where (Reche et al. 2002), for the prediction of MHCI-
restricted epitopes we see no clear differences between
results obtained from PSSMs derived with BLK2PSSM
and PROFILEWEIGHT. When all peptides are included in
the alignment, PSSM generated with BLK2PSMM gave
better results (Fig. 3a2), but if the epitopes to be predicted
are not included in the alignment, then PSSMSs generated
from PROFILEWEIGHT gave slightly better results. On
the other hand, for the prediction of MHCII-restricted
epitopes PSSMs obtained with BLK2PSSM and a posi-
tion-based weighting scheme gave better results indepen-
dently of whether the epitopes to be tested were included
in the alignment (Fig. 3b1,2). It is also important to note
that there is some variability between the prediction tests
obtained for the different MHC molecules targeted in this

test (indicated by standard deviation in Fig. 3). Moreover,
variability is greater in tests concerning the prediction of
MHCII-restricted epitopes. This indicates that each PSSM
has a different threshold of top scoring peptides at which
known binders appear. Thus, for each PSSM we defined a
PSSM-specific binding threshold (PSBT) as the score
value that includes 85% of the peptides from which that
PSSM was obtained.

Prediction of proteasomal cleavage using statistical
language modeling tools

Statistical language modeling is the science of building
probabilistic models from word strings. Language models
including n-gram models are most frequently applied in
speech recognition and natural language tagging (Rosen-
feld 2000), but have also been applied to the sequence
analysis and motif identification (Jimenez-Montano et al.
2002; Wu and Shivakumar 1994; Wu et al. 1996).
Cleavage by the proteasome occurs at preferential sites
within the protein, and sequence signals from antigenic
peptides processed by the proteasome are especially
conserved at position P1 of the cleavage site (the C-
terminus of antigenic peptide) and its immediate flanking
P1’ residue (Altuvia and Margalit 2000). Prediction of
proteasomal cleavage resembles the problem of language
tagging (modeling the location of grammatic tags such as
punctuation signs) and thus we have used the SRILM
toolkit (Stolcke 2002) for statistical modeling of protea-
somal cleavage sites. Training sets for statistical modeling
of proteasomal cleavage were obtained from a database
containing the C-terminus and flanking regions of 332
antigens restricted by human MHCI molecules (See

Table 3 Proteasomal cleavage prediction results using representa-
tive LMPCPs at different thresholds. LMPCPs were obtained using
NGRAM-COUNT and tested using HIDDEN-NGRAM at different
probability thresholds (Pro). N−2 LMPCP models were produced by
varying the order of the model (i) from 2 to N−1, and the best model

at each threshold is shown in this table. N size of the peptides
fragments in the training and testing sets; PCS predicted cleavage
sites; ECS expected cleavage sites calculated according to Eq. 3
(Materials and methods)

Modela Frag. size (N) Oder (i) Prob PCS (%) ECS (%) PCS−ECS (%) Mean sizec

LMPCP10
2(0.10) 10 2 0.10 87.6 39.2 48.4 2.84

LMPCP2
8 (0.15) 8 2 0.15 80.3 37.4 42.9 2.95

LMPCP6
6 (0.20) 6 6 0.20 73.9 37.2 36.7 2.98

LMPCP6
6 (0.25) 6 6 0.25 66.7 31.9 34.8 3.43

LMPCP4
2 (0.30) 4 2 0.30 82.1 47.6 34.5 2.48

LMPCP4
2 (0.35) 4 2 0.35 78.6 43.1 35.5 3.07

LMPCP4
2 (0.40) 4 2 0.40 75.7 40.0 35.7 3.31

LMPCP4
2(0.45) 4 2 0.45 71.4 36.2 35.2 3.92

LMPCP4
2 (0.50) 4 2 0.50 66.4 33.1 33.3 4.60

LMPCP4
2 (0.55) 4 2 0.55 59.3 28.8 30.5 5.15

LMPCP4
2 (0.60) 4 2 0.60 50.0 23.8 26.2 6.11

LMPCP4
2 (0.65) 4 2 0.65 49.3 21.9 27.4 6.99

LMPCP4
2(0.70) 4 2 0.70 47.9 20.5 27.4 7.77

aThe models that were implemented in the RANKPEP web server are shown in bold
bProbability above which a cutpoint is predicted
cMean size of the fragments yielded by the relevant LMPCP when tested over the full length proteins bearing the peptide fragments of the
testing set
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Materials and methods for details). Sequence information
for this initial data set is shown in Fig. 4. As noted by
others, P1 followed by P1′ are the positions with the
largest information content (Altuvia and Margalit 2000;
Kesmir et al. 2002). Significant sequence information is
also found in the P3′ and P2 positions. LMPCP were based
on n-gram statistics (Rosenfeld 2000) and created from
training sets of peptide fragments of variable fragment
length derived from the above database. LMPCP were
tested at different cutpoint probabilities (0.1–0.70) using
HIDDEN-NGRAM with testing files of peptide fragments
not included in the training sets as well as with their entire
protein sources. For each probability threshold, 23
different LMPCPN

i [N=10, 6, 4; i=1−(N−2)] were tested,
where N is the fragment size of fragment in training and
testing sets and i is the order of the LMPCP tested (See
Materials and methods for details). The LMPCPs were
ranked with regard to the percentage of correctly PCS
minus the percentage of ECS (Eq. 3 in Materials and
methods). The best LMPCP at each threshold is shown in
Table 3 along with the indicated mean size of the fragment
yield by the model. PCS varied with the relevant LMPCP,
and was always under 50% if the cutpoint probability
threshold was set above 0.7. Furthermore, LMPCPs from
fragments of size four (two residues at each side of the
cleavage site) were the best if the threshold cutpoint was
above 0.3. PCS were under 50% if the models were
generated from training sets containing fragment sizes
longer than ten (for example, six residues to each side of
the cleavage site) for all the cutpoint probability thresholds
tested (0.1–0.7) (data not shown). With the exception of
LMPCP6

6 (0.25), PCS were above 70% only under soft
cutting probability (0.1–0.4) (Table 3), indicating that the
nature of the proteasome specificity is much less rigid than
that of grammar tagging for which these languages models
were originally intended. Yet, PCS by these models exceed
the ECS by at least 30% (Table 3). The average size of the
length of the peptide fragments produced by LMPCPs

varied, with those providing a highest PCS yielding
smaller fragments (around three residues) (Table 3).

Web implementation

Predictions of peptide-MHCI binding using PSSMs are
available on-line from the Molecular Immunology Foun-
dation web server hosted by Dana-Farber Cancer Institute
(http://www.mifoundation.org/Tools/rankpep.html). The
server consists of a set of python and perl scripts that
handle the input, combine the prediction of peptide-MHC
binding and proteasomal cleavage and serve the output
over the Internet. The interface to the server, shown in
Fig. 5a, is divided in six major sections: PSSMs, INPUT,
THRESHOLD, PROTEASOME CLEAVAGE, and AD-
VANCED OPTIONS. The PSSM section includes a
selection of 88 MHCI-specific (81 human and seven
mouse), and 50 MHCII-specific (38 human and 12 mouse)
PSSMs for the prediction of peptide binding. Alterna-
tively, the users can input their own PSSMs for the
prediction of peptide-MHC binding. Optional PSSMs
included in the server for the prediction of MHCI-peptide
binding are those obtained using PROFILEWEIGHT
(Thompson et al. 1994b), whereas PSSMs for the
prediction of peptide binders to MHCII are those obtained
using BLK2PSSM (Henikoff et al. 1999) with position-
based weights (Henikoff and Henikoff 1994)(see Results).
The INPUT query for the prediction of peptide binders to
MHC molecules can be sequence(s) in FASTA format or
an MSA. If an MSA is entered, the server creates a
consensus sequence in which the variable positions are
masked (see Materials and methods), and prediction of
peptide-MHC binding is restricted to the conserved
regions. Default variability for masking is 1.0 (positions
with a variability above 1.0 will be masked). Roughly, a
position in the alignment with a variability under 1.0 is
either occupied by a prevalent residue (around 90% of the
residues are identical) or by two different residues equally
represented (∼50% each). The variability threshold can be
set to other values in the ADVANCED OPTIONS section.
Values must range between 0 and 4.3 to be consistent with
Eq. 4 (Materials and methods). Using the THRESHOLD
options, peptides can be sorted by the number of top
scoring peptides or the percentage of top scoring peptides.
Filtering the sorted peptides by molecular weight can also
be done using the ADVANCED OPTIONS section.
Models for the prediction of proteasomal cleavage are
selected in the PROTEASOME CLEAVAGE section. The
current models (highlighted in Table 3) include LMPCP10

2

(0.1) (option 1), LMPCP4
2 (0.45) (option 2), and

LMPCP2
4 (0.7) (option 3). The RANKPEP result page

(Fig. 5b) displays the PSSM selected, the optimum
sequence (consensus) for that PSSM, i.e., the sequence
that gives the highest score, and a list of peptides whose
number is determined in the THRESHOLD section and
ordered by score. For every sorted peptide, the server also
outputs its molecular weight, and its relative score in
percentage to that of optimum score. Peptides whose

Fig. 4 Sequence logo of peptide fragments containing the C-
terminal end of MHCI-restricted peptides. The sequence logo was
built as indicated from a collection of peptide fragments containing
the C-terminus of 332 human MHCI-restricted epitopes and their
flanking regions (see Materials and methods). The C-terminus of
each epitope corresponds to the P1 proteasomal cleavage site
(shown by the vertical bar)
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scores are equal or greater than the PSBT score will be
highlighted in red and, when predicting MHCI-binding
peptides, those containing a C-terminal end predicted to be
the result of proteasomal cleavage are shown in violet
(Fig. 5b).

Discussion

Prediction of peptide-MHC binding using profiles:
selection of PSSMs and thresholds

PSSMs or profiles are useful for representing sequence
motifs. Indeed, popular databases such as BLOCK
(Henikoff et al. 1999), PROSITE (Hofmann et al. 1999),
and IMPALA (Schaffer et al. 1999) rely on motif profiles
for the functional classification of new sequences via their
similarity to these profiles. Similarly, PSSMs of peptides
known to bind to MHC can be used for the identification/
prediction of peptide-MHC binders. We first applied this
idea to the prediction of MHCI-peptide binding (Reche et
al. 2002). Here we have extended the method to the
prediction of peptide-MHCII binding. PSSMs for the
prediction of both MHCI and MHCII binding are now

available at the RANKPEP web site (http://www.mifoun-
dation.org/Tools/rankpep.html). PSSMs for the prediction
of peptide-MHCI binding have been derived from
ungapped alignments of peptides of the same length.
Since MHCI molecules can bind peptides between eight
and 11 residues in length, several PSSMs might be
available at the RANKPEP web server for the independent
prediction of 8mer, 9mer, 10mer or 11mer peptide binders
to a given MHCI molecule. Most of the known MHCI-
restricted peptides are 9mers (∼90%)(data not shown), and
therefore, in the absence of a certain preference for a given
size, we suggest selecting PSSMs for the prediction of
9mer peptide binders. PSSMs for the peptide-MHCII
binders always target the 9mer core of the peptide binders.

Overall, PSSMs for prediction of peptide-MHCI bind-
ing and MHCI-restricted epitopes are more sensitive than
those used for the prediction of peptide-MHCII binding
and MHCII-restricted epitopes. Consequently, a higher
threshold is required to predict a similar percentage of
epitopes (Table 2, Fig. 3) This result does not necessarily
indicate that PSSMs specific for the prediction of MHCII
were derived from incorrect alignments, but rather could
reflect the greater structurally inherent peptide binding
promiscuity of MHCII molecules (see Results). Indeed,

Fig. 5a, b The RANKPEP web server. a RANKPEP input page.
The page is divided into several sections: PSSM for the selection of
MHCI-specific and MHCII-specific matrices; INPUT; THRESH-
OLD, and PROTEASOME CLEAVAGE as discussed in Results;
ADVANCE OPTIONS include filtering the peptide results by the
molecular weight (MW) of peptides, and selection of a variability
threshold (0–4.3) to mask sequence variability from inputs in the
form of multiple sequence alignment. b RANKPEP result page. The

page lists a number of peptides from the query given at a selected
threshold. Also indicated in the result page is the PSSM selected and
the binding threshold of the PSSM. Peptides whose scores are above
the PSBT are shown in red. Peptides shown in violet contain a C-
terminal residue that is predicted to be the result of proteasomal
cleavage. If the proteasomal cleavage filter is checked ON, only
violet peptides will be shown. Proteasomal cleavage options are only
applied to the prediction of MHCI-restricted peptides
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from the available crystal structures of peptide-MHCII
complexes, we determined that the peptide binding core
fitting onto the MHC groove was properly defined in the
relevant alignments from which the PSSMs were derived
(data not shown). PSSMs in RANKPEP are associated
with a specific binding threshold above which sorted
peptides are highlighted in the results page (Fig. 5b). Since
PSBT is variable with regard to the sequence space
diversity of the aligned peptides, both overestimation and
underestimation of the number of peptides that are
predicted to bind to a given MHCI molecule can occur.
Therefore, following the results summarized in Table 2,
Fig. 3, we recommend using a 2–3% binding threshold of
top scoring peptides for the prediction of MHCI-restricted
peptides, and a 4–6% threshold for the prediction of
MHCII-restricted peptides.

Prediction of peptide-MHC binding using profiles:
comparison with other methods

Prediction of peptide-MHC binding is important for the
anticipation of T-cell epitopes and so determination of
peptides that can bind to MHC molecules has been
approached by a large array of methods including
sequence patterns (Sette et al. 1989), motif-matrices (De
Groot et al. 1997; Rammensee et al. 1999), quantitative
matrices (QM) (Guan et al. 2003; Hammer et al. 1994;
Parker et al. 1994; Stryhn et al. 1996; Udaka et al. 2000),
virtual quantitative matrices (VQM) (Raddrizzani and
Hammer 2000; Sturniolo et al. 1999), artificial neural
networks (ANN) (Adams and Koziol 1995; Brusic et al.
1998a; Gulukota et al. 1997; Honeyman et al. 1998);
hidden Markov motifs (HMM) (Mamitsuka 1998; Udaka
et al. 2002); structural peptide threading (SPT) (Altuvia et
al. 1997; Schueler-Furman et al. 2000; Swain et al. 2001),
support vector machine (SVM) algorithms (Donnes and
Elofsson 2002; Zhao et al. 2003) and stepwise discrimi-
nant analysis meta-algorithm (SDA) (Mallios 1999). QM
and VQM methods are derived from actual binding
experiments, whereas SPT is an entirely computer-based
method that relies on the evaluation of peptide fit into the
binding groove, and despite its great potential is currently
still under development. On the other hand, techniques
such as sequence patterns, motif-matrices, ANN, HMM,
SVM, and SDA algorithms rely on the analysis of the
sequences of peptides that are experimentally known to
bind. Prediction of peptide-MHC binding using PSSMs
lies within the motif-matrices methods, although in
previous methods the matrices coefficients were adjusted
either manually (Rammensee et al. 1999) or were not
specified (De Groot et al. 1997). In any case, motif-
matrices are a more accurate predictor of peptide-MHC
binding than simple single sequence patterns (Reche et al.
2002). Most of these methods have been applied to both
the prediction of peptide-MCHI and peptide-MHCII
binding, and as occurs with the use of PSSMs, the success
of the predictions seems to be greater for the prediction of
peptide-MHCI binding than peptide-MHCII binding. In

terms of accuracy (a balance between sensitivity and
specificity) ANN and HMM have been reported to be best
predictors of peptide-MHC binding, perhaps because they
can model binding interferences, positive or negative,
between the side chains of the peptides. Other methods
assume independent binding of each side chain. Never-
theless, independent binding is generally the case, as
supported by experimental evidence (Parker et al. 1994;
Sturniolo et al. 1999). Indeed, in a recent study of the
independent binding assumption for binding of peptides
epitopes to MHCI molecules, there was only marginal
improvement when sidechain pair interactions were
introduced into the motif-matrix predictor (Peters et al.
2003). Furthermore, the accuracy of our profiles, given by
the AUC value (Table 2), is similar to that reported by
ANN and HMM methods. However, an objective com-
parison between these methods should be done upon
experimental determination of the binding of peptides
predicted from a protein query. It is in fact revealing that in
practicum, only 30–50% of predicted peptides from query
proteins turn out to be significant binders, independently
of the method used. In the absence of such experimental
testing, a rigorous computer-based comparison of the
various peptide-MHC binding prediction is not straightfor-
ward, as the various methods have been training with
different set of data and the results are dictated by the
chosen test peptides. Thus, in this paper we have also
determined whether known T-cell epitopes can be
predicted from their protein sources using realistic thresh-
olds. In this scenario, we find that using PSSMs around
80% of the known MHCI-restricted and MHCII-restricted
epitopes appear among the top 3% and 5% scoring
peptides, respectively (Fig. 3a,b).

Examples of online web servers for the predictions of
peptide-MHC binding are available for most of the
methods discussed above (see Table 1 in Guan et al.
2003). However, all these sites are for the prediction of
peptide binding to either MHCI or MHCII molecules
alone. The exception is the SYFPEITHI web site
(Rammensee et al. 1999) that contain matrices for the
prediction of peptide-MHCI and peptide-MHCII binding,
but therein, the number of MHCII molecules that can be
targeted for peptide prediction is very limited. The
RANKPEP web site contains the largest set of predictors
for the anticipation of peptide-MHCI and peptide-MHCII
binding (88 and 50 PSSMs for targeting peptide binding
predictions to independent MHCI and MHCII molecules,
respectively).

Antigen processing: prediction of proteasomal
cleavage using statistical language models

Antigen processing occurs prior to MHC binding, thus
determining the pool of peptides that can become T-cell
epitopes. CD8 T-cell epitopes, and MHCI-restricted
peptides in general, derive from protein fragments
generated by the protease activity of the proteasome.
Protein fragments thus generated are substrates for amino-
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peptidases that destroy most of the fragments. Never-
theless, a few peptides ranging between eight and 15
residues in length are translocated to the endoplasmic
reticulum (ER) by the TAP transporter, where they can
either be destroyed by an additional amino-peptidase or be
rescued by binding to MHCI molecules (Pamer and
Cresswell 1998; Rammensee 2002; Serwold et al. 2002).
Thus, the N-terminus of any class I restricted peptide is
shaped by activity of several amino-peptidases with the
resulting loss of information, whereas the C-terminus is
the result of the original proteasomal cleavage (Craiu et al.
1997). The proteasome is a multi-enzyme complex, whose
catalytic subunits, and resulting specificity, change in the
presence of IFN-γ. The form in the absence of IFN-γ is
referred to as the constitutive proteasome, whereas the
form in the presence of IFN-γ is known as the
immunoproteasome (Fruh and Yang 1999; Toes et al.
2001). Although subject to debate, it is believed that the
immunoproteasome is responsible for the generation of
CD8 T-cell eptiopes (Chen et al. 2001; Toes et al. 2001;
van Hall et al. 2000). Therefore, to increase the immuno-
logical relevance of our study we have modeled the
specificity of the proteasome from a set of known CD8 T-
cell epitopes and their flanking regions using statistical
language models. Three of these models (LMPCP)
[(Table 3)] are now implemented in the RANKPEP web
site to predict whether the C-terminus of a given peptide
might result from proteasome activity. The default model
[model one: LMPCP10

2 (0.1)] predicted about 85% of the
cleavage sites (Table 3), providing the largest increase of
PCS over the ECS of all tested models (48.4%). In a
genome-wide characterization of CD8 T-cell epitopes from
influenza virus in mouse, Zhong et al. (Zhong et al. 2003)
proved that the combined use of this LMPCP can reduce
the list of peptide-MHCI binders by ~30% without
compromising the number of peptides that are true T-cell
epitopes. The average fragment length yielded by
LMPCP10

2 (0.1) is, however, much smaller (∼3 residues)
than that experimentally determined for the proteasome (of
7–9 residues) (Kisselev et al. 1999; Toes et al. 2001),
suggesting that the specificity of this particular LMPCP is
rather low (many false positives). The smaller fragment
size yield by LMPCP10

2 (0.1) could also reflect the
clustering and consequent overlap of epitopes observed
within protein regions [(Meister et al. 1995); our own
unpublished observations from the HIV CTL database in
Los Alamos; url: http://www.hiv.lanl.gov/]. Nevertheless,
to anticipate the possibility of rather low specificity of
model LMPCP10

2 (0.1), RANKPEP also provides two
additional models, LMPCP4

2 (0.45) and LMPCP4
2 (0.7),

which although less sensitive (Table 2), produce larger
fragments and thereby are expected to be more specific. In
particular, LMPCP4

2 (0.7) yields peptide fragments with
an average size (~8 residues) that is consistent with that
thought to be generated by the proteasome (Table 3).
However, it is important to note that LMPCP are not
meant to predict proteasome fragmentation patterns, but to
indicate whether the C-terminus of a peptide can result
from proteasomal cleavage. Finally, there is an extra

benefit of combining LMPCP with peptide-MHCI binding
prediction using PSSMs. It is known that the C-terminal
position of the peptide is always an anchor residue
(Fig. 4). Note that prediction of peptide-MHCI using
PSSMs assumes an independent contribution of each
residue, and there are occasions in which top ranking
peptides may contain a C-terminus that is not likely to be
an anchor residue. In this scenario, the coupled usage of
LMPCP will help to discard those peptides, thereby
improving the MHCI-binding prediction. Moreover, some
valuable information about the TAP transport of peptides
into the ER may also have been incorporated into our
LMPCP. TAP transport is essential for epitope generation,
and our LMPCP models were trained using known
epitopes.

A similar approach for modeling the proteasome
cleavage site from known MHCI-restricted T-cell epitopes
using ANN has already been reported (Kesmir et al. 2002).
Relative to the language model herein, ANN produced
larger fragments (~9 residues) more consistent with those
thought to be generated by the proteasome. However, the
training set consisted of peptides of up to 18 residues (9
residues at each side of the C-terminus end), and therefore
the result would be biased toward the average length of the
epitope, as there is significant sequence information with
regard to the background along the entire length of the
epitope. Other approaches for modeling the proteasome
cleavage site include the analysis of the fragmentation
patterns of a given protein with purified constitutive
proteasome cores (Holzhutter and Kloetzel 2000; Kesmir
et al. 2002; Kuttler et al. 2000). The biological relevance
of the data generated from these important studies might
be limited due to the fact the degradation was mediated by
the proteasome rather than the immunoproteasome.

Processing of MHCII-restricted ligands relies mainly on
exogenous proteins that are directed to the endosomal
compartment, where they are degraded by the action of
several endo-peptidases as well as by amino-peptidases
and carboxy-peptidases (Pieters 2000; Watts 2001). This
processing complexity together with the fact that MHCII
molecules bind peptides of different yet overlapping
lengths, makes the generation of models for the prediction
of MHCII-antigen processing difficult. Nevertheless,
recent reports indicate the existence of conserved regions
flanking the core CD4 T-cell epitopes that are related to
antigen processing rather than peptide-MHC interaction
(Sant’Angelo et al. 2002). Moreover, some reports argue
that they may contribute to immunogeneicity as well
(Carson et al. 1997). Thus, when anticipating MHCII-
restricted T-cell epitopes using RANKPEP, we suggest
considering peptides consisting of the predicted 9mer
binding cores plus the three most proximal amino acids
flanking their N-terminal and C-terminal ends.

Conclusions

Engagement of both CD8 and CD4 T-cells is desirable for
mounting a strong defensive immune response against

417



cancer cells and pathogens. Since antigen processing and
presentation by MHCI and MHCII molecules differ,
prediction of T-cell epitopes requires the development of
bioinformatics tools that are able to cope with this
complexity. To this end, our RANKPEP server represents
a powerful tool that allows: (1) the prediction of peptide
binding to MHCI and MHCII molecules using motif
profiles; (2) greater specificity of CD8 T-cell epitope
identification through combined proteasomal cleavage site
prediction; and (3) prediction of conserved epitopes from
MSAs. Finally, RANKPEP is a versatile and flexible web
server, providing many sorting options and the possibility
of using custom built matrices for prediction of peptide-
MHC binding.
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